The Triangle
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 49955 | Accepted: 30177 |
Description
7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 (Figure 1)
Input
Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.
Output
Your program is to write to standard output. The highest sum is written as an integer.
Sample Input
573 88 1 0 2 7 4 44 5 2 6 5
Sample Output
30
Source
题目链接:
题目要求:
输入一个n层的三角形,第i层有i个数,求从第1层到第n层的所有路线中,权值之和最大的路线。 规定:第i层的某个数只能连线走到第i+1层中与它位置相邻的两个数中的一个。题目分析:
典型的动态规划。
因此我们可以从下往上推,相邻的两个数中找较大的与上层相加,得出的结果相邻的两个数中再找较大的与上层相加,以此类推。用二维数组d_[][]记录从下到该点的最大值。
核心代码
d[i][j] += d[i+1][j] > d[i+1][j+1] ? d[i+1][j] : d[i+1][j+1];
最后的结果就是d[0][0]。
下面给出AC代码:
1 #include2 #include 3 int max(int a,int b) 4 { 5 return a>b?a:b; 6 } 7 inline int read() 8 { 9 int x=0,f=1;10 char ch=getchar();11 while(ch<'0'||ch>'9')12 {13 if(ch=='-')14 f=-1;15 ch=getchar();16 }17 while(ch>='0'&&ch<='9')18 {19 x=x*10+ch-'0';20 ch=getchar();21 }22 return x*f;23 }24 inline void write(int x)25 {26 if(x<0)27 {28 putchar('-');29 x=-x;30 }31 if(x>9)32 {33 write(x/10);34 }35 putchar(x%10+'0');36 }37 int a[101][101],d[101][101];38 int n;39 int dp(int i,int j)40 {41 if(d[i][j]>=0)42 return d[i][j];43 return d[i][j]=a[i][j]+(i==n-1?0:max(dp(i+1,j),dp(i+1,j+1)));44 }45 int main()46 {47 int i,j;48 while(scanf("%d",&n)!=EOF)49 {50 for(int i=0;i